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THE ARCSINE LAW IN THE GENERALIZED
ANALOGUE OF WIENER SPACE

KuN Sik Ryu*

ABSTRACT. In this note, we prove the theorems in the general-
ized analogue of Wiener space corresponding to the second and the
third arcsine laws in either concrete or analogue of Wiener space
[1,2,7] and we show that our results are exactly same to either the
concrete or the analogue of Wiener case when the initial condition
gives either the Dirac measure at the origin or the probability Borel
measure.

1. Introduction

In 1940, Levy proved a beautiful Theorem, say the first arcsine law in
the concrete Wiener space [3], that proportion of time ms, (T4 (z) < t) =
Zaresiny/t for t € [0, 1], where T (z) = my({t € [0,1]|z(t) > 0}). Since
then, one proved the second and the third arcsin laws in the concrete
Wiener space that mg,(L(z) < t) = mg,(Mi(z) < t) = 2arcsiny/t for
t € [0,1] where L(x) = sup,(s)=g $ and M} (x) = supp<s<q x( )[1,2,4].

In 2002, the author and Dr.Im presented the definition of the ana-
logue of Wiener space, a kind of the generalization of the concrete Wiener
space, and its properties[5]. In 2010, the author introduce the defini-
tion of the generalized analogue of Wiener space, a kind of the more
generalization of the analogue of Wiener space, and its properites|6].
In [7], the author proved the second and the third arcsine laws in

the analogue of Wiener space as following; letting o = E%Ot and 0 =
+
25 for 0 < s < T, mg(L(x) = [0 Smﬁaexp( 202)4—
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a0 [ exp(—% ) du)exp(—; o *)dtdg(ug) and mey (6 (x e
s 1 _LO2
(f(] 7r\/me}‘;p( o )dr)d¢(u0).
Here, if ¢ = &g, our results are exactly the same to the results in the
concrete Wiener case. In this note, we will prove the theorems in the

generalized analogue of Wiener space, corresponding to the second and
the third arcsine laws in the concrete Wiener space.

2. The definitions and the basics properties of generalized
analogue of Wiener space

In this section, we introduce the definitions of the generalized ana-
logue of Wiener space and investigate the basic properties of it which
are needed to understand the next section. Throughout in this note,
let T' be a positive real number, let C[0,7] be the space of all con-
tinuous functions on a closed interval [0,7] with the supremum norm
l|zllcc = supsepo,r |2(t)], let ¢ be a probability Borel measure on R,
let my, be the Lebesgue measure and let «, 5 : [0,7] — be continous
functions such that g is non-negative strictly increasing. We define the
generalized analogue of Wiener measure mq 5.4 on C[0,T] as follows.
Let £ = (to,t1,t2, + ,t,) With 0 =tg <t; <to < --- <t, <T. Let J;:
C[0,T] — R"™! be a function with J{z) = (z(to), z(t1), (tg) < x(ty))
and let B; (j =0,1,2,---,n) be in B(R). The subsets J (H] 1(Bj) of
C[0,T1] is called an interval and let M be the smallest o- algebra contains
all intervals. For an interval thl(l_[?zo Bj), let w¢(Jt:1(H?:0 Bj)) =
fBo fB1 .- -anW(n + 164 o B)dmp (up)dmp (up—1) - - - dmp(uy)do(ug)

where W (n + 1; t_: o, B)

| () —u i talt)?
= a1 om0 P2 Zia sty )

Let mq,g,s be the Borel measure on C[0, 7] such that for all I in M,
we(I) = ma,p.e(I), this measure is called the generalized analogue of
Wiener measure on C[0,T.

When « is a zero function and 3 is an identity funtion, m, g.s is the
analogue of Wiener measure, when ¢ is a Dirac measure dy at the origin
, o is a zero function and 3 is an identity function, m, g4 is the concrete
Wiener measure.

From [6], we can find the following lemma.
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LEMMA 2.1. Under the notations in above, if f : R"*1 R is a Borel
measureable fuction then the following equality holds.

/ F(a(to), (t), 2(ta), -+, 2(t))dma, s o)
co,1]

n+1 o
:/ f(UO,Ul,UQ,"' ,’U,n)W(n+].,t,l_/:,Oé,ﬁ)
R

n
([T me) x ¢)((ur, uz, -+, un), u0))
j=1
where if one side integral exists, the both sides integral exist and the
two values are the same.

REMARK 2.2. (1) For a Borel subset B of C[0,T], map,4(B) =
Jma3.6.(B)d(w).

(2) mg has no atoms.

For z in C[0,T], t in [0,7] and a real number b, we let Tp(x) =
inf,=pt, L(z) = supy—ot, Me(2) = supg<,<iz(s) and by (x) =
SUP,(s)= M, () S- Here, Tj is called the first time hits b, L is called the last
time of the last zero before T" and M; is called the running maximum.

A random variable X is said to have the arcsine distribution if it
is supported on [0,7] with the cumulative density function F(t) =
2 . i o1 . . — / — 1
= arcsin \/; (or probability density function f(t) = F'(t) e m)

LEMMA 2.3. (The reflection principle in the generalized analogue of
Wiener space) For a rea] number a and t in (0,T], mq g.¢(2(t) < a) =

Foo (u—a(t)—uo+a(0))2
WI 2 (uwo—a(0)+a(t))— exp(— 2(5(,5)7%(0)) )dudgb(uo)

Proof. From the change of variables theorem, we have
_ 1 © o (B alt) —u + a(0))?
Mg (A8) < @) = B0 - SO I O o)

(u— a(t) — up + a(0))?

)du

exp(— )du
\/277 2(up—a(0)+a(t))—a 2(8(t) — 8(0))
= ma,ﬂ,éuo( (t) > 2(uo = a(0) + a(t) — a).
So, we obtain our equality from Remark 2.2 (1) in above. O

REMARK 2.4. If « is a zero function and ( is an identity function,
Ma,g;e i the analogue of Wiener measure,

+00 )
masolalt) <a)= = [ /2  exp(= g dudo(uo),
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Which is exactly the same to the result in the analogue Wiener case [7].
When ¢ is a Dirac measure 50 at the origin in R, « is a zero function,
>, >,

mﬂyﬁ%d’(x( ) < a’ m ?t)du \/ﬁ/ 2t

which is exactly the same to the result in concrete Wiener measure [1].

—)du

LEMMA 2.5. For a real number b and t in (0,T],

Ma,B,¢ Tb \/>{f f(b a(t)—uo-‘r(x(o))/mexp( %)dv)dd)(’(l@)
+fb+°°<f£i;‘*“)‘“°+“(°”/v‘“”““0 exp(— 5 )dv)dd(uo)} + B({b}).

Proof. When b = ug, ms, (Th(z) < t) = ms,, (2(0) = ug) = 1. If b < uy,
by the symmetry of Brownian motion and the intermediate value theorem, we
have

Ma,Bi6., (To(z) <)

= Ma, g5, (To(7) <t,2(t) > b) + maps,, (Th(z) < t,2(t) <b)
= 2ma g5, (To(z) < t,2(t) <b)

= 2Ma,B;6., (z(t) < b)

9 rb—a(t)—uo+a(0))/+/B(t)—B(0) V2
=4/ 7/ exp(——)dv.
T ) _ o 2

By the essentially similar method in above, if b > wug,

2
/2 v
Ma,B;6,, (Tp(z) < t) / p(—?)dv.
—a(t)—uo+a(0))/+/B(t)—B(0)
Hence, we have our conclusion from Remark 2.2 (1) in above. O

REMARK 2.6. (1) When « is a zero function, § is an identity function,
Mo (Ty(@) < 1) = {2 ([0 ve &P(— 4 ) dv)de(uo)
+ fb+oo(f£[;u°)/ﬁexp(—%)dv) dé(uog)} + ¢({b}). This is exactly the
same to the results in the analogue of Wiener case. If « is a zero function,
(3 is an identity function and ¢ = 8o then mq g, = V27 be;(\)/o{ exp(—%)dv,

2
Fmape(Ty(x) < t = Ls exp(=57).

(2) When b # ug, %ma,g;(su (Ty(z) < t) = sgn(b— at) + ug), /W
exp(—%) If the Radon-Nikodym derivative % h exists

- : o _
and is continuous, gpma,gs,, (Th(7) < t) = W

b b
(= J* o exp(— GOl ydg (ug) + [, exp(—GorOotels)do (uo) }
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3} 1)/ /B BO)
o et /aa ) P )dma (u) — [°0
eXP(_T)dmL( u) th(b).

o _ 1 ~ a(0) — a(t) —
gE M Bib g (Th(2) <1) = —pmmmerss o — a(0) — a(t) = b]
(b—a(t)—uo+a(0)?

eXp(fw) fOr t in (O,T] SO, ma”g;éu‘) (Tb(l‘) > t)

(o1 |y _ _ _ (bug)+(0)

=) sy Mo (0) — alt) = bl exp(= 50 =50y )4

If the Radon-Nikodym derivative % = h exists and is continuous,
2o (Th(2) < 1) = [ e {2a (H)(B() = BO) + 5 (b
a(t) — up) } exp(—L=gllsto el yag (ug) — [ {20 (£)(B(t) — B(0)) +

B(b— alt) — uo)}exp(—%)dqﬁ(uo)] When « is a zero

function, S is an identity function and the Radon-Nikodym derivative
dé _

dmL

= h exists and is continuous, %maﬁ@(Tb( ) < t) =/ 523 [ffoo(b—

o) exp(— C52=)do(uo) — [, (b — o) exp(— C5 )do(uo).

This is exactly same to the results in the concrete Wiener case. From
[1, 2], we know that, in the concrete Wiener case, for b > 0, 0 <
t < T and a Borel subset B in R, mq g3, (Th(z) < t,z(t) € B) =

ﬁbe_B exp(—%)dv. By the essentially similar method, we obtain, in
the generalized analogue of Wiener case, if b > uy,

Ma,pi6., (To(2) < t,2(t) < a)

2 “+o00 02
= f/ exp(——)dv and if uy < b,
™ Jo—a(t)~uo—a(0) /y/BO—B) )

Ma,pie(Ty(z) <t z(t) < a)

2/ (b—a(t)—uo+a(0))/+/B(t)—B(0) 2

exp(—?)dv.

0
Therefore, we have
Ma,pio(To(z) < t,2(t) < a)

exp(— "L dud(u)

W/ /2(b a(t)—uo—a(0))— a/m

400 p2(b—a(t)—uo—a(0))—a/+/B(t)—B(0 u?
+/ / eXP(—?)dUdMUO)-
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LEMMA 2.7. Let a and b be two real numbers with a < b and b > 0.
Then mq g, (Mi(z) > b, 2(t) < a)

_ \/12?{/%()/&_"0 exp(_“;)dudo;(uo)
2

u
exp(——)dudp(u,)}
/ /{2(17 a(t)—uo—a(0))—a}/+/B(t)—B(0) 2t

and me, g, (M (z) < b,z(t) < a)

/ /(a wo)/v/BO—B0) w2

\/ﬂ exp(— = )dudg(u,)

2

u
exp(——-)dudp(u,)}.
/ /{2<b a(t)—uo—a(0))—a}//B(H)—B(0) 2

Proof. If ug > b, by the intermediate value theorem,
Ma g5, (Mi(2) 2 b,2(t) < a) =ms, ,, (2(t) <a). Hug <b,maps,, (Mi(z) >
b,z(t) < a) =ma,ps,, (To(z) < b,z(t) < a). So, we obtain our equality. O

REMARK 2.8. (1) mqg.o(Mi(z) < b,z(t) < a) = mage(zt) < a) —

Ma,g;6(Me (2 )>bx()<a mf ([l wo)/A/B(H)—B(0)

exp(—5)du}dd(u0) = F= [ el r-at)-soaton - a}/v/BO—50)
eXP(—Tdu}df/)(uo)

(2) Forb > 0, a be a zero function and B be an identity function. mq, g.s, (M;(z) <

a/\t
b,x(t) < a) = \/127(f / exp(—4 )du f(% OV
2 —a)?
exp(—%)du). So, Lma.ps,(My(x) < bx(t) < a) = /2 exp(—252)
and %;amawg;go(Mt(x) < b z(t) < a) = f\(/i%a) exp(— (2b a) ). This is
exactly same to the result in the concrete Wiener case.
2

(3) If ug > b, then M, B:5,, (M(x) < b,z(t) < a) = 0. So, %maﬁ’guo

(M(z) < b,z(t) < a) = 0 and if up < b then from Remark(2) in above,

? 2(2b—« —uo—a(0))—a
o0 e s, (Mi(2) < b,2(t) < a) = ¥ \/ﬂg()t)—(;a(o);))

{(2b—a(t) —ug+a(0))—a}?
exp(— 2800~ A(0)) )-

3. The second and the third arcsine laws in generalized analogue
of Wiener space

In this section, we prove the second and the third arcsine laws in generalized
analogue of Wiener space which are main theorems in this notes.
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2

Let ®(z) F f exp(—%-)du. Then the following two equalities are known

facts
o0 exp(— (“;72)2 )du = 2mo®(—2)
and
O+°O uexp(—(u;—:;) Ydu = o?exp(— 202) V2raoc®(—2).

THEOREM 3.1. (The seond arcsine Laws in generalized analogue of Wiener
: _ (B®)—B(0))(uo—(0)) _ . /(B1®)—B(0)(u—a(0))
space) Let v = =550 50 5500y and 0 = \/ Foat-280) + Tor0<s <
T,

Ma,g;0(L(T) < 3)

+oo 1 ) 1)2
/ / FOCOE O ARk

e 2 (w0 — a(0))?
“’"/0 exp( z”“e"p( 2(3(s) + B(Y) — 26(0))

Proof. From Remark 2.6 (3), we have

)dtd(uo).

Ma,B,5., (Ty(z) > t)
Heo 1 (b — ug + (0))?

B Y T ) A (TP T ) e
Hence, by the Fubini Theorem, for ug in R,
ms,, (L(x) < s)
oo (w1 —a(s) —uo + a(O))2)
m— 2(8(s) — AO))
ms, (TO( )>T — s)du1
e eXp (u1 — a(s) —uo + 04(0))2)
o /2 2(B(s) — B(0))
o 1 iy — a(®)exp(— =)
s \/27(B(t) — B(0))3 2t !
+o0 1 +oo (Ul _ v)2
/T . 271_\/ —50)(30) — B0))7° ([m |ur — a(t)|exp(— % )
(uo® —a(O))

30508 + 50) — 28(0)) ™
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Using the equality in above of this theorem,
s, (L() < 3)

-/ 1 (02 exp(—25)
7—s m/(B(s) — B(0))(B(t) — B(0))® 20°
v (w0 — a(0))*
+va(/0 exp(—?)du)exp(—%ﬂ(s) —T—ﬁ(t) — 3500 )dt.
Therefore, we have our equality. O]

REMARK 3.2. If ¢ = dy, « is a zero function and 8 be an identity function

then putting u = s%_t,
+o0 0.2
ms(L() < 5) = / A
T—s TV 813
= \[ 1 ——dt
T Jr—s \[(S—Ft)
1T

— ——du
TJo  yu(l—u)

2 . s
= —arcsing/ —.
s T

This is exactly same to the results in the concrete Wiener case.

THEOREM 3.3. (The third arcsine laws in generalized analogue of Wiener
space) Let 0 < s <t <T witht+s <T. Then

+o0
s <a=[ /W EOYERRED)

—uo+a<o>>2 o

Proof. Let Xy(z) = 2(t + s) — (s ) and Ny(x) = maxo<y<u X (v) for 0 <
u <T. Then

Ni_s(z) = Ogrqul%i(isx(u +3s)—x(s) = Srgg;ctx(u) —xz(s)

and the following (a), (b) and (c) are equivalent :

(a) Oi(x) <s

(b) My(x) = My(),

(C) Ms(x) > Nt—s(x) + .’1?(8)

Hence, for up in , 5> 0and 0 < s <t < T with ¢t +s < T, by Remark 2.2 (3),
sy (Mi(2) < b,04(2) < 8) = ma, (Mo() < b, M, (&) — 2(s) > Ni—s(2))

Miug (€ > Nios(2))

uQ

=ms,, (Ms(x) —uo <b—wuo, Ms(x) — x(s) > c,c> Nt’s(x))mg (c > Ni_s(2))

=ms,, (Ms(x) < b, Ms(x) — 2(s) > c)ms,, (¢ > Ni—s()).

wo
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Therefore, from Lemma 2.4 and the Fubini theorem,

m§u0 (Mt < b gt( ) < S)

/+oo /+oo /+°°%;hm5uo (M (z) < b, No(z) — 2:(s) > h)

ms,, (¢ > Ne—s(z)dh}dc]db

87
/ﬂo/+oo /W b+hfuo+a(0))
— B(0))*(B(t) = B(s))
DR e C
exp(— 2(B(s) — /3(0)) 208(t) — B()) )dh}dcldb

:/om[/om )(ﬂ(t) B(s))

. (b+ ¢ —uo + a(0))? B c?
AN T(e =50) 20 - IO
[ (=t a(0))?
“Us x (t)—ﬂ(O)e P60 - o) M
+oo u2
exp(——)du).
(/(b—u0+a(0))\/(B(t)—ﬁ(S))[(ﬁ(S)—ﬁ(o))(ﬁ(t)—ﬁ(o))] p( 2 ) )
So,
sy (01(x) < 5)
Kl —+oo 2
= /0 (/0 8§8Tm5“0 (Mi(x) < b,0:(x) < r)db)dr
= /S L exp(— (b—uo +(0))* )dr
o m/(B(t) — B(r)(B(r) — B(0)) 2(8(r) — B(0))
— ° 1 Uo2 d
- || s
Therefore, we obtain our equality O

REMARK 3.4. If ¢ = dp, « is a zero function and 3 is an identity function
then

s 1 ’LLQ 2 . S
0 <s)= | —— ——)dr = —.
me(0:(x) < ) /0 Y~ exp(—— )dr = 7rarcsm\/;

This is exactly same to the results in the concrete Wiener case.
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